Что такое синус и синусоида
Содержание:
- Использование формул
- Графики функций с модулем
- Особенности построения
- Рубрика «Вопросы и ответы»
- Общая схема построения графика функциис помощью геометрических преобразований
- Графики простейших функций — линейная, параболы, гиперболы, экспоненты, показательные, степенные, логарифмическая, синус, косинус, тангенс, котангенс изучаемых в школе Справочная таблица.
- График линейной функции
- График синуса и косинуса
- Таблица синусов и косинусов в Excel
- Насколько быстр синус?
- 2.3.2. Синус и косинус window.top.document.title = «2.3.2. Синус и косинус»;
- Неизбежная окружность
Использование формул
Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.
Для примера вычислим значение тангенса π8, который был использован в предыдущем примере. Возьмем за основу основные формулы тригонометрии.
Пример 8
Найдите значение tgπ8 .
Используя формулу тангенса, преобразуем уравнение до следующего равенства tg2π8=1-cosπ41+cosπ4 . Значения косинуса угла π4 известны из предыдущего примера. Благодаря этому мы быстро найдем значения тангенса.tg2π8=1-cosπ41+cosπ4=1-221+22=2-22+2==(2-2)2(2+2)·(2-2)=(2-2)222-(2)2=(2-2)22
Угол π8 является углом первой четверти. Согласно таблице основных тригонометрических функций по четвертям координатной плоскости, тангенс этого угла положителен. Продолжаем вычисления для дальнейшего решения: tgπ8=tg2π8=(2-2)22=2-22=2-1
tgπ8=2-1.
Графики функций с модулем
Для качественного усвоения материала необходимо понимать, что такое модуль. Краткую информацию о нём можно найти на странице Математические формулы и таблицы в справочном материале Горячие формулы школьного курса математики.
Применение модуля тоже представляет собой геометрическое преобразование графика. Не буду создавать сверхподробный мануал, отмечу только те моменты, которые, с моей точки зрения, реально пригодятся для решения других задач по вышке.
Сначала посмотрим, что происходит, когда модуль применяется к АРГУМЕНТУ функции.
Правило: график функции получается из графика функции следующим образом: при график функции сохраняется, а при «сохранённая часть» отображается симметрично относительно оси .
Пример 22
Построить график функции
И снова вечная картина:
Согласно правилу, при график сохраняется:
И сохранившаяся часть отображается симметрично относительно оси в левую полуплоскость:
Действительно, функция – чётная, и её график симметричен относительно оси ординат. Поясню детальнее смысл симметрии. Посмотрим на два противоположных значения аргумента, например, на и . А какая разница? Модуль всё равно уничтожит знак «минус»: , то есть значения функции будут располагаться на одной высоте.
Функцию от модуля можно расписать в так называемом кусочном виде по следующему правилу: . В данном случае:
То есть, правая волна графика задаётся функцией , а левая волна – функцией (см. Пример 13).
Пример 23
Построить график функции
Аналогично, ветвь «обычной» экспоненты правой полуплоскости отображаем симметрично относительно оси в левую полуплоскость:
Распишем функцию в кусочном виде: , то есть правая ветвь задаётся графиком функции , а левая ветвь графиком .
Модуль не имеет смысл «навешивать» на аргумент чётной функции: и т.п. (проанализируйте, почему).
И, наконец, завершим статью весёлой нотой – применим модуль к САМОЙ ФУНКЦИИ.
Правило: график функции получается из графика функции следующим образом: часть графика , лежащая НАД осью сохраняется, а часть графика , лежащая ПОД осью отображается симметрично относительно данной оси.
Странно, что широко известный график модуля «икс» оказался на 24-й позиции, но факт остаётся фактом =)
Пример 24
Построить график функции
Сначала начертим прямую, известную широкому кругу лиц:
Часть графика, которая ВЫШЕ оси , остаётся неизменной, а часть графика, которая НИЖЕ оси – отображается симметрично в верхнюю полуплоскость:
Модуль функции также раскрывается аналитически в кусочном виде:
Внимание! Формула отличается от формулы предыдущего пункта!
В данном случае: , действительно, правый луч задаётся уравнением , а левый луч – уравнением .
Кстати, – редкий экземпляр, когда можно считать, что модуль применён, как к аргументу: , так и к самой функции: . Изучим более «жизненную» ситуацию:
Пример 25
Построить график функции
Сначала изобразим график линейной функции :
То, что ВЫШЕ оси абсцисс – не трогаем, а то, что НИЖЕ – отобразим симметрично относительно оси в верхнюю полуплоскость:
Согласно формуле , распишем функцию аналитически в кусочном виде: .
Или, упрощая оба этажа: , то есть правый луч задаётся функцией , а левый луч – функцией . Сомневающиеся могут взять несколько значений «икс», выполнить подстановку и свериться с графиком.
На какие функции модуль «не действует»? Модуль бессмысленно применять к неотрицательным функциям. Например: . Экспоненциальная функция и так полностью лежит в верхней полуплоскости: .
Всё возвращается на круги своя, синусом начали, синусом и закончим. Как в старой доброй сказке:
Пример 26
Построить график функции .
Изобразим сами знаете что =)
И снова – то, что находиться в верхней полуплоскости – оставим в покое, а содержимое подвала – отобразим симметрично относительно оси :
Кстати, понятен ли вам неформальный смысл такого симметричного отображения? Модуль «съедает» у отрицательных чисел знак и делает их положительными, именно поэтому «подвальные» точки занимают противоположные места в верхней полуплоскости.
Распишем функцию в кусочном виде:
Решив два простейших школьных неравенства , получаем:, где – любое целое число.
Да, статья была не самой приятной, но крайне необходимой. Однако повествование завершилось и стало немножко грустно =) Чем-то напомнило мне всё это урок про метод Симпсона, который тоже создавался в марте, и тоже достаточно долгое время. Наверное, громоздкие вещи пишутся по сезону =)
Желаю успехов!
(Переход на главную страницу)
Особенности построения
Чтобы выявить свойства синусоиды, необходимо построить её график, провести исследование синуса. В алгебре под функцией представлена плоская кривая, которая выражает закон колебания sin с учётом изменения центрального угла. Сама синусоида строится в схематической последовательности:
- проводится горизонтальная ось, на которой откладывается заданная длина волны;
- отрезок делится на равные части;
- слева чертится окружность с радиусом, равным величине амплитуды;
- окружность делится на 12 одинаковых частей;
- через полученные точки проводятся прямые;
- из точек проводятся перпендикуляры к оси.
График можно построить на онлайн ресурсе либо с помощью специальных программ (Excel). Для расчёта используется калькулятор, основная формула y=sin х. При решении задач учитывается длина волны, которая равна 2 пи. Такое преобразование объясняется тем, что значение функции при любом икс совпадает с её периодичностью x+2π.
Пересечение оси Ох происходит в точках перегиба πK. Максимум достигается при положительном π/2+2πK, а обратное — -π/2+2πK. Свойства кривой проявляются в частном либо комплексном виде:
- размах;
- растяжение/сжатие;
- фазовые колебания;
- круговая частота.
При сдвиге графика влево к значению пи/2 образуется косинусоида. Любое изменение величины характерно для квадрата с гармоническими колебаниями. Примеры подобных явлений: движение маятника, сбои с напряжением в электросети. Другой случай с синусоидальными колебаниями — звук. Он редко бывает чистым, соответствуя y=A sin wt, где:
- А (а) — модуль неизвестной (расстояние от начала координат до точки А);
- w — угловая частота;
- t — время.
Рубрика «Вопросы и ответы»
Первый раз, изучая синусы, я упустил несколько вещей:
Синус вообще-то 1-мерный.
Синус движется в одном измерении. Правда. Мы часто рисуем синус, изменяющийся во времени, а иногда и «предмет», описывающий своим движением синус, тоже куда-то движется, но это уже опционально! Скачок в одном направлении — вполне себе полноценная волна синусоиды.
Окружности — это пример синусных волн.
Окружности и квадраты — это комбинации базовых элементов (синусов и прямых отрезков). Но окружности не являются основой синусоиды, как и квадрат не является составной частью прямой.
Что показывают значения синуса?
Синус принимает значения от -1 до 1. Он начинается с 0, возрастает до 1.0 (максимум), падает до -1.0 (минимум) и снова возвращается в нейтральную точку, к нулю. Я также вижу синус как процент от 100% (полный вперёд!) до -100% (полный обратный ход).
Что означает вводное значение ‘x’ в функции sin(x)?
Каверзный вопрос. Поскольку это цикл и х — вводный параметр, он означает, как далеко мы прошли по окружности.
Рассмотрим пример с линиями:
- Мы бродим по квадрату. За 10 секунд мы проходим каждую сторону.
- Спустя 1 секунду, вы прошли 10% от одной стороны
- Спустя 5 секунд, вы прошли одну сторону на 50%
- Через 10 секунд вы пройдете всю сторону.
В линейном движении есть парочка сюрпризов. Рассмотрим теперь синус (сфокусируемся на цикле «от 0 до максимума»):
- Мы путешествуем по синусоиде, стартуя с 0 (нейтральная точка) до 1.0 (максимум). И на этот путь у нас ушло 10 секунд.
- Спустя 5 секунд мы…прошли 70%! Синус очень быстрый на старте, и потихоньку замедляется к вершине. Так что большую часть пути мы пройдем за первые 5 секунд.
- И еще 5 секунд нам потребуется на то, чтобы пройти с 70% до 100% пути. А отрезок с 98% до 100% занимает почти целую секунду!
Несмотря на высокую начальную скорость, синус замедляет свой рост, так что мы очень плавно касаемся точки максимума и разворачиваемся назад. Эта плавность и делает синус синусом.
Если вам очень интересны подробности, нажмите «show stats» в симуляторе. Вы увидите процент выполнения полного цикла, мини-цикла (с 0 до 1.0) и текущее значение. Остановите движение (кнопка Stop), попереключайтесь между линейным и синусоидальным движением, чтобы сравнить значения.
Маленькая проверка: Что будет дальше, 10% линейного цикла или 10% синусного? Правильный ответ — синусного.
Помните, в самом начале синус максимально ускорен. Ко времени достижения 50% цикла, синус движется со средней скоростью линейного цикла и, более того, замедляется (пока не достигнет максимума и не развернется).
Так что x — это «количество вашего цикла». Какого цикла?
Зависит от контекста.
- Базовый вариант: ‘x’ — это градусы, и полный цикл состоит из 360 градусов
- Продвинутый вариант: ‘x’ — это радианы (они более натуральные!) и полный цикл составляет полный проход по единичной окружности (2*π радиан)
Поэкспериментируйте со значением х здесь:
Но опять же, циклы зависят от окружностей! Можем ли мы как-то вырваться из-под их тирании?
Общая схема построения графика функциис помощью геометрических преобразований
Рассмотрим функцию , которая «базируется» на некоторой функции . Для многих читателей алгоритм построения графика уже понятен:
– на первом шаге выполняем преобразования, связанные с АРГУМЕНТОМ функции (см. первые два параграфа), в результате чего получаем график функции ;
– на втором шаге выполняем только что рассмотренные преобразования, связанные с самой ФУНКЦИЕЙ, и получаем график .
Завершим самое длинное построение данного урока:
Пример 19 (концовка Примера 10)
Построить график функции
В примере № 10 мы выполнили построение графика , то есть полностью разобрались с аргументом функции. И сейчас осталось выполнить завершающие шаги.
График функции :
4) отобразим симметрично относительно оси : ;
5) сдвинем вдоль оси на 3 единицы вверх: :
На практике, к счастью, построения почти всегда более коротки, например:
– кубическую параболу сдвигаем вдоль оси на 5 единиц вправо и сжимаем вдоль оси в 3 раза.
– график экспоненты отображаем симметрично относительно оси ординат, затем – симметрично относительно оси абсцисс.
– график функции смещаем влево на 5 единиц, затем – вверх на 1 единицу.
И т.д. Некоторые геометрические преобразования можно поменять местами, но это возможно далеко не всегда! Поэтому «чайникам» лучше придерживаться алгоритма, изложенного в начале параграфа.
Весь материал статьи, который носит в бОльшей степени всё-таки справочный характер, потребуется для выполнения чертежей в других задачах, но время от времени на практике рассматриваемое задание встречается отдельно, причём, бывает, в «сыром» виде:
Пример 20
Построить график функции с помощью преобразований графиков элементарных функций
Методику быстрого построения параболы я разобрал на первом уроке о графиках функций, однако здесь по условию необходимо применить вполне определённый способ.
На первом шаге представим функцию в виде . Для этого используем так называемый метод выделения полного квадрата. Советую не пренебрегать задачей, поскольку типовой приём потребуется и в будущем, например, при нахождении интегралов от некоторых дробей.
Идея состоит в том, чтобы искусственно преобразовать функцию ТАК, чтобы воспользоваться одной из формул сокращенного умножения либо .
Начнём преобразования. Коэффициент при выносим за скобку:
Очевидно, что выражение сведётся к формуле . В скобках конструируем :
Таким образом, . Теперь организуем , для этого в скобках прибавим и вычтем :
Последнее слагаемое выносим из скобок:
Используем формулу и суммируем два последних слагаемых:
В целях проверки целесообразно раскрыть скобки и убедиться, что получится исходная функция:
Построим график . Параболу :
1) Сдвинем вдоль оси на влево: (синий цвет);
2) Вытянем вдоль оси в 2 раза: (малиновый цвет);
3) Сдвинем вдоль оси на вверх: (красный цвет):
Рассмотрим ещё один типовой трюк:
Пример 21
Построить график функции с помощью преобразований графиков элементарных функций.
Сначала сведём функцию к виду . Все действия я закомментирую:
(1) В знаменателе выносим –1 за скобки. Это необходимо, чтобы аргумент функции представить «в привычном» порядке .
(2) Минус знаменателя поставим перед дробью. В числителе проведём искусственное преобразование – прибавим и вычтем единицу. Это необходимо для почленного деления на следующем шаге.
(3) Почленно делим числитель на знаменатель. Возьмите на заметку рассмотренный приём, он используется при интегрировании дробей.
(4) Раскрываем скобки.
Проведём построение. График гиперболы (чёрный цвет):
1) Сдвинем вправо на 1 единицу: (синий цвет);
2) Отобразим симметрично относительно оси абсцисс: (малиновый цвет);
3) Сдвинем вдоль оси на единицу вниз: (красный цвет):
Перейдём к заключительной части урока, в которой речь пойдёт о модуле. Хотел её сделать отдельной небольшой страничкой или pdf-кой, да потом передумал, чего уж тут мелочиться. Хотя эта статья далеко не рекордная по количеству букв, солидную часть объема занимают чертежи.
Графики простейших функций — линейная, параболы, гиперболы, экспоненты, показательные, степенные, логарифмическая, синус, косинус, тангенс, котангенс изучаемых в школе Справочная таблица.
- ;
- ;
- ;
- ;
- ;
Название функции | Формула функции | График функции | Название графика | Комментарий |
---|---|---|---|---|
Линейная, прямая пропорциональность | y = kx | Прямая | Cамый простой частный случай линейной зависимости — прямая пропорциональность у = kx, где k ≠ 0 — коэффициент пропорциональности. На рисунке пример для k = 1, т.е. фактически приведенный график иллюстрирует функциональную зависимость, которая задаёт равенство значения функции значению аргумента. | |
Линейная, прямая пропорциональность со сдвигом | y = kx + b | Прямая | Общий случай линейной зависимости: коэффициенты k и b — любые действительные числа. Здесь k = 0.5, b = -1. | |
Квадратичная функция | y = x2 | Парабола | Простейший случай квадратичной зависимости — симметричная парабола с вершиной в начале координат. | |
Квадратичная функция | y = ax2 + bx + c | Парабола | Общий случай квадратичной зависимости: коэффициент a — произвольное действительное число не равное нулю (a принадлежит R, a ≠ 0), b, c — любые действительные числа | |
Степенная функция | y = x3 | Кубическая парабола | Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». | |
Степенная — корень квадратный | y = x1/2 | График функцииy = √x | Самый простой случай для дробной степени (x1/2 = √x). Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». | |
Степенная — обратная пропорциональность | y = k/x | Гипербола | Самый простой случай для целой отрицательной степени (1/x = x-1) — обратно-пропорциональная зависимость. Здесь k = 1. | |
Показательная функция | y = ex | Экспонента | Экспоненциальной зависимостью называют показательную функцию для основания e — иррационального числа примерно равного 2,7182818284590… | |
Показательная функция | y = ax | График показательной функции а>1 | Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 2x (a = 2 > 1). | |
Показательная функция | y = ax | График показательной функции 0<a<1 | Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5x (a = 1/2 < 1). | |
Логарифмическая функция | y = ln(x) | График логарифмической функции — натуральный логарифм | График логарифмической функции для основания e (натурального логарифма) иногда называют логарифмикой. | |
Логарифмическая функция | y = logax | График логарифмической функции — логарифм по основанию а>1 | Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1). | |
Логарифмическая функция | y = logax | График логарифмической функции 0<a<1 | Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2 < 1). | |
Синус | y = sinx | Синусоида | Тригонометрическая функция синус. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». | |
Косинус | y = cosx | Косинусоида | Тригонометрическая функция косинус. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». | |
Тангенс | y = tgx | Тангенсоида | Тригонометрическая функция тангенс. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». | |
Котангенс | y = сtgx | Котангенсоида | Тригонометрическая функция котангенс. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций». |
График линейной функции
Линейная функция задается уравнением . График линейной функций представляет собой прямую. Для того, чтобы построить прямую достаточно знать две точки.
Пример 1
Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.
Если , то
Берем еще какую-нибудь точку, например, 1.
Если , то
При оформлении заданий координаты точек обычно сводятся в таблицу:
А сами значения рассчитываются устно или на черновике, калькуляторе.
Две точки найдены, выполним чертеж:
При оформлении чертежа всегда подписываем графики.
Не лишним будет вспомнить частные случаи линейной функции:
Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа. В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками
1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.
2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».
3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».
Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .
Построение прямой – самое распространенное действие при выполнении чертежей.
Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости.
График синуса и косинуса
Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток .
Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).
Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.
Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.
Мы знаем, что
sin 0 = 0
sin π/6 = 1/2
sin π/2 = 1
Значит, график синуса должен проходить через точки (0; 0), (π/6; 1/2) и (π/2; 1). Отметим их на координатной плоскости:
С помощью некоторых соображений симметрии можно вычислить ещё несколько точек в диапазоне от 0 до 2π. Не будем перечислять их координаты, а просто отметим их на рисунке:
Теперь соединим их плавной кривой:
Мы получили график синуса на промежутке от 0 до 2π. Но ведь мы можем вычислить синус для любого другого угла! При этом мы используем тот факт, что углам, отличающимся на 2π (на один полный оборот), на единичной окружности соответствует одинаковая точка. То есть этим двум углам будут соответствовать точки на графике с одинаковой ординатой (координатой у), но абсциссами, отличающимися на 2π. Другими словами, точку графика можно перенести на 2π (то есть 12 клеточек) влево или вправо:
Перенести можно не одну точку, а сразу всё множество точек, лежащих между 0 и 2π:
Получили ещё два участка графика, на промежутках и . Эти участки также можно переместить влево и вправо. Продолжая этот процесс бесконечно, мы получим весь график у = sinx:
В результате мы получили кривую, которую называют синусоидой.
Теперь построим график косинуса. Мы знаем что
cos 0 = 1
cos π/3 = 1/2
cos π/2 = 1
Получается, что график должен проходить через точки (0;1), (π/3; 1/2) и (π/2; 0). Отметим их на плоскости:
Можно вычислить, используя симметрию на единичной окружности, ещё несколько точек, которые должны лежать на графике. Не приводя этих вычислений, просто отметим эти точки на плоскости:
Соединяем эти точки плавной линией:
Как и в случае с синусом, участок графика косинуса можно перенести на 2π (12 клеточек влево и вправо). В результате таких действий получим окончательный вид ф-ции у = cosх:
Можно заметить несколько особенностей полученных графиков. Во-первых, все точки обоих графиков лежат в «полосе» между прямыми у = 1 и у = – 1. Это следствие того, что и у синуса, и у косинуса область значений – это промежуток :
Во-вторых, график косинуса очень похож на синусоиду. Он имеет такую же форму, но просто смещен на π/2 (3 клеточки) влево. Это не случайно, в будущих уроках мы узнаем причину этого явления. Но, так как график косинуса – это просто смещенная синусоида, то термин «косинусоида» для его обозначения почти не используется – он просто избыточен.
В-третьих, графики обладают периодичностью. Они «повторяются» с периодом 2π. Дело в том, что углам, отличающимся друг от друга на 2π (то есть ровно на один полный поворот в 360°), на единичной окружности соответствует одна и та же точка. То есть справедливы формулы:
sin (x+ 2π) = sinx
cos (x+ 2π) = sinx
В-четвертых, можно заметить, что график косинуса симметричен относительно оси Ох, а график синуса симметричен относительно начала координат. Это значит, что синус является , а косинус – . Напомним, что ф-ция f(x) является нечетной, если справедливо условие
f(x) = – f(– x)
Если f(x) – четная ф-ция, то должно выполняться условие:
f(x) = f(– x)
Действительно, если отложить на единичной окружности углы α и (– α), то можно заметить, что их косинусы будут равны друг другу, и синусы окажутся противоположными:
Поэтому верны формулы:
sin (– α) = – sinα
cos (– α) = cosα
Таблица синусов и косинусов в Excel
Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?
Заполним столбцы значениями углов в градусах:
Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:
Вычислим значения для всех значений углов. Полученный результат:
Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.
Аналогичным способом создадим таблицу синусов в Excel:
Насколько быстр синус?
Я вас немного запутал. Сначала я сказал: «представьте, что синусу нужно 10 секунд, чтобы добраться с 0 до максимума». А сейчас я говорю, что ему надо π секунд, чтобы добраться с 0 до максимума и обратно спуститься к 0. Что происходит?
- sin(x) — это базовая синусная волна, которой действительно требуется π единиц времени, чтобы пройти путь с 0 до максимума и опять до 0 (или 2*π, чтобы обойти свой полный период)
- sin(2x) — это синусоида, которая движется вдвое быстрее
- sin(x/2) — это синусоида, которая движется вдвое медленее базовой
Так что мы используем sin(n*x) , чтобы сделать синус, который будет двигаться так быстро, как нам нужно. Очень часто слово «синусоида» используется для указания общей формы волны, а не конкретной скорости.
2.3.2. Синус и косинус window.top.document.title = «2.3.2. Синус и косинус»;
Положение точек на координатной окружности можно задавать не только длиной дуги, но и декартовыми координатами. Построим декартову систему координат с центром в точке O, осью абсцисс, проходящей через начало отсчета A (0), и осью ординат, проходящей через точку
За единицу отсчета возьмем радиус этой окружности. Декартовы координаты точки M (x) единичной окружности называются косинусом и синусом числа x:
Модель 2.9. Координатная окружность |
Для
определение синуса и косинуса совпадает с геометрическим определением этих понятий, заданных при помощи прямоугольного треугольника OPM. В этом случае
Так как координаты точек окружности единичного радиуса по модулю не превосходят 1, то
|
Таким образом, областью значений обеих функций является отрезок .
Ниже приведены значения косинуса и синуса для некоторых значений x:
|
|||||||||||||||||||||||||
Таблица 2.3.2.1 |
Функция sin x обращается в нуль при x = πn, функция cos x обращается в нуль при
|
|
График 2.3.2.1.Графики функций y = sin x и y = cos x. |
in xcos x
Промежутки монотонности и знакопостоянства:
|
|||||||||||||||
Таблица 2.3.2.2 |
Синус достигает максимума в точках
и минимумы в точках
Косинус достигает максимума в точках xmax = 2πn, минимума – в точках xmin = π + 2πn.
Функция sin x нечетна, функция cos x четна:
Формулы приведения, позволяющие свести тригонометрические функции от любого аргумента к функциям от углов из промежутка
|
Основное тригонометрическое тождество (следствие теоремы Пифагора):
|
Некоторые тригонометрические формулы приведены в таблице.
График функции y = sin x называется синусоидой, а функции y = cos x – косинусоидой. В обоих случаях достаточно построить графики на отрезке или , а затем периодически продолжать их на всю ось. Более того, достаточно построить график y = sin x на отрезке
отразить симметрично относительно оси
а затем отразить получившийся график относительно точки (π; 0). График y = cos x после построения на отрезке
нужно отразить относительно точки
а затем получившийся график – относительно оси x = π. Заметим также, что косинусоида получается из синусоиды сдвигом на π/2 влево, поэтому, как правило, используется только термин «синусоида».
Модель 2.10. Математический маятник |
Синус и косинус применяются во многих областях физики и математики. Например, с их помощью удобно описывать гармонические колебания, задаваемые формулами y = A cos (ωx + φ) или y = A sin (ωx + φ). Здесь A – амплитуда, ω – частота, φ – начальная фаза колебаний. Для построения графика гармонического колебания необходимо последовательно выполнить следующие операции над синусоидой:
- сжать к оси ординат с коэффициентом ω,
- перенести вдоль оси абсцисс на φ влево,
- растянуть от оси абсцисс в A раз.
Если мы имеем дело с явлением, в котором одновременно происходят несколько различных колебательных процессов с соизмеримыми периодами, то зависимость колеблющейся величины от времени остается периодической, но график этой зависимости в общем случае уже не является синусоидой. Любую из функций, описывающих эту зависимость, можно представить в виде суммы постоянной составляющей и гармонических колебаний с частотами, кратными
Модель 2.11. Колебания в электрической цепи |
Неизбежная окружность
У окружности есть синус. Да. Но увидеть синус внутри окружности — это всё равно, что получить из омлета яйца обратно, когда все они хорошенько друг с другом перемешаны!
Давайте помедленнее. В симуляторе установите такие параметры: vertical:none и horizontal: sine*. Видите, как смайлик движется вперёд-назад? Это и есть движение синуса. Небольшой фокус: обычно синус начинает свой цикл на нейтральной срединной точке и бежит к максимуму. На этот раз мы начинаем в максимуме и падаем к срединной точке. Синус, который «стартует на максимуме», называется косинусом, и это просто версия синуса (как горизонтальная прямая является версией вертикальной прямой)
Настало время для обеих синусных волн: установите параметры vertical:sine и horizontal:sine*. И… у нас получилась окружность!
Горизонтальные и вертикальные «прыжки» в сумме дали круговое движение. В большинстве учебников рисуют окружность и пытаются извлечь из нее синус, но я предпочитаю обратный подход: начать с простого горизонтального или вертикального движения и добавить противоположное.