Массивы в python

Содержание:

Функции, доступные в Python Bitarray:

Сл Нет Функция Описание Тип возврата
1 все() True, когда все биты в массиве истинны тип bool
2 какой-нибудь() True, когда любой бит в массиве истинен тип bool
3 добавить(пункт, /) Добавьте значение истинности bool(item) в конец битового массива
4 bytereverse() Реверсирует порядок битов на месте
5 понятно() Опустошает битовый массив
6 копировать() Копирует битовый массив битаррей
7 Подсчитывает частоту значения bool инт
8 extend(iterable или string, /) Расширяет битовый массив
9 заполнять() Добавляет 0s в конец bitarray, чтобы сделать его кратным 8 инт
10 индекс(значение,, stop=, /) Находит индекс первого вхождения заданного значения bool инт
11 вставить(индекс, значение, /) Вставляет значение bool в заданный индекс
12 инвертировать(индекс=) Инвертирует все биты на месте
13 intersearch(bitarray, /) Поиск заданного битового массива итератор
14 длина() Дает длину битового массива инт
15 pop(индекс=-1, /) Удаляет и возвращает i-й элемент пункт
16 удалить(значение, /) Удалите первое вхождение заданного значения bool
17 обратный() Изменяет порядок битов на месте
18 Сортирует биты по местам

Функции, доступные для объекта bitarray

Логика реализации динамических массивов Python:

Если необходимо добавить список, скажем arr 1, размер которого больше размера текущего массива, то необходимо выполнить следующие действия:

  • Выделите новый массив,скажем arr2, имеющий большую емкость
  • Установите, for,1….n-1, где n-текущий номер элемента.
  • Set, как теперь arr2-это наш новый список.
  • Теперь просто добавьте новый элемент в arr1.

Давайте посмотрим на его реализацию в Python:

import ctypes 

class DynamicArray(object): 
	
	def __init__(self): 
	 
	 
	.make_array(self.capacity) 
		
	def __len__(self): 

		return self.n 
	
	def __getitem__(self, k): 

		if not 0 self.n: 
			print("please enter appropriate index..") 
			return
		
		if.capacity: 
			self._resize(2*self.capacity) 
			
		
		for i in range(self.n-1,index-1,-1): 
		.A 
			
		
	 
	


		
	def delete(self): 

		if: 
			print("Array is empty deletion not Possible") 
			return
		
	
	
	
	
	def removeAt(self,index): 
	

		if: 
			print("Array is empty deletion not Possible") 
			return
				
		if index<0 or.n: 
			return IndexError("Index out of bound....deletion not possible")		 
		
		if.n-1: 
		
		
			return		
		
		for i in range(index,self.n-1): 
		.A			 
			
		
	
	

		
	def _resize(self, new_cap): 

	.make_array(new_cap) 
		
		for k in range(self.n):  
		.A 
			
	 
	 
		
	def make_array(self, new_cap): 

		return (new_cap * ctypes.py_object)()

Объяснение:

Сначала мы создали класс динамического массива, который будет вести себя как список Python. Давайте подробно разберемся в различных функциях:

def __init__(self):

  • self.n -> подсчитайте фактическое количество элементов
  • self.capacity -> емкость по умолчанию установлена как 1
  • <сильное>я.A -> массив с заданной емкостью

def __getitem__(self, k):

  • Верните элемент в положение k
  • Сначала он проверяет, находится ли позиция k в пределах массива
  • Если он находится в пределах границы массива, возвращается элемент в этой позиции

def append(self, ele):

  • Добавьте элемент в конец массива
  • Если в массиве недостаточно доступной емкости, размер массива удваивается
  • self.n устанавливается в индекс элемента и увеличивается

def _resize(self, new_cap):

  • Измените размер массива до большего размера
  • Объявите новый массив большего размера
  • Ссылка на все существующие значения
  • Вызовите новый больший массив
  • Сброс емкости

Python lists vs arrays

Lists Arrays
Python lists are flexible and can hold arbitrary data. Python arrays are just a thin wrapper on C arrays.
The list is part of python, so they do not need to be declared first. Arrays need to be imported or declared first from other libraries(i.e. numpy).
It cannot directly handle arithmetic operations. Can directly handle arithmetic operations.
Preferred for shorter sequences of data items. Preferred for longer sequences of data items.
Greater flexibility allows easy modification of data. Less flexibility since addition, deletion has to be done element-wise.
Consume larger memory for easy addition of elements. Comparatively more compact in memory size.

Добавьте массив NumPy в другой

Вы можете добавить массив NumPy в другой массив NumPy с помощью метода append ().

Рассмотрим следующий пример:

import numpy
 
a = numpy.array()
 
b = numpy.array()
 
newArray = numpy.append(a, b)
 
print("The new array = ", newArray)

В этом примере создается массив NumPy “a”, а затем создается другой массив с именем “b”. Затем мы использовали метод append() и передали два массива. Поскольку массив “b” передается в качестве второго аргумента, он добавляется в конце массива “a”.

Как мы видели, работа с массивами NumPy очень проста. Массивы NumPy очень важны при работе с большинством библиотек машинного обучения. Итак, мы можем сказать, что NumPy-это ворота в искусственный интеллект.

Массив Python

Python поддерживает все операции, связанные с массивом через объект своего списка. Начнем с одномерного инициализации массива.

Пример массива Python

Элементы массива Python определены в скобках И они разлучены запятыми. Ниже приведен пример объявления одномерного массива Python.

arr = 
print (arr)
print (arr)
print (arr)

Выход из двухмерного массива пример программы будет:


3
5

Индексирование массива начинается от 0. Таким образом, значение индекса 2 переменной ARR составляет 3.

В некоторых других языках программирования, такие как Java, когда мы определяем массив, нам также нужно определить тип элемента, поэтому мы ограничиваем хранение только в том виде данных в массиве. Например, умеет хранить только целые данные.

Но Python дает нам гибкость иметь различные данные данных в том же массиве. Это круто, верно? Давайте посмотрим пример.

student_marks = 
marks = student_marks+student_marks
print(student_marks + ' has got in total = %d + %f = %f ' % (student_marks, student_marks, marks ))

Он дает следующий выход:

Akkas has got in total = 45 + 36.500000 = 81.500000 marks

В приведенном выше примере вы можете увидеть это, Массив имеют три типа данных – строка, int и float.

Python многомерный массив

Двухмерный массив в Python может быть объявлен следующим образом.

arr2d =  , ]
print(arr2d) # prints elements of row 0
print(arr2d) # prints elements of row 1
print(arr2d) # prints element of row = 1, column = 1

Это даст следующий вывод:

                                                                                                                                                                       
                                                                                                                                                                       
4  

Точно так же мы можем определить трехмерный массив или многомерный массив в Python.

Примеры массива Python

Теперь, когда мы знаем, как определить и инициализировать массив в Python. Мы рассмотрим разные операции, которые мы можем выполнить на массиве Python.

Массив Python, проходящая с использованием для петли

Мы можем использовать для петли для прохождения сквозь элементы массива. Ниже приведен простой пример для цикла для прохождения через массив.

arrayElement = 
for i in range(len(arrayElement)):
   print(arrayElement)

Ниже изображения показывает вывод, создаваемый вышеупомянутым примером примера массива.

Пересекающий 2D-массив, используя для петли

Следующий код распечатает элементы ROW-WISE, а затем следующая часть печатает каждый элемент данного массива.

arrayElement2D =  ,  ]
for i in range(len(arrayElement2D)):
   print(arrayElement2D)

for i in range(len(arrayElement2D)):
   for j in range(len(arrayElement2D)):
       print(arrayElement2D)

Это выведет:

Python Array Append

arrayElement = 
arrayElement.append('Four')
arrayElement.append('Five')
for i in range(len(arrayElement)):
   print(arrayElement)

Новый элемент четыре и пять будут добавлены в конце массива.

One
2
Three
Four
Five

Вы также можете добавить массив на другой массив. Следующий код показывает, как вы можете сделать это.

arrayElement = 
newArray = 
arrayElement.append(newArray);
print(arrayElement)
]

Теперь наш одномерный массив наращивания превращается в многомерное массив.

Массив Python размер

Мы можем использовать Функция для определения размера массива. Давайте посмотрим на простой пример для длины массива Python.

arr = 

arr2d = ,]

print(len(arr))
print(len(arr2d))
print(len(arr2d))
print(len(arr2d))

Нарезание массива Python

Python предоставляет особый способ создания массива из другого массива, используя нотацию среза. Давайте посмотрим на несколько примеров ломтиков наращиваний Python.

arr = 

#python array slice

arr1 = arr #start to index 2
print(arr1)

arr1 = arr #index 2 to end of arr
print(arr1)

arr1 = arr #start to index 2
print(arr1)

arr1 = arr #copy of whole arr
print(arr1)

arr1 = arr # from index 1 to index 5 with step 2
print(arr1)

Ниже приведены изображение Python Array Slice Program Example.

Мы можем вставить элемент в массиве, используя функция.

arr = 

arr.insert(3,10)

print(arr)

Python Array POP.

Мы можем вызвать функцию POP на массиве, чтобы удалить элемент из массива по указанному индексу.

arr = 

arr.insert(3,10)
print(arr)

arr.pop(3)
print(arr)

Это все о массиве Python и разных операций, которые мы можем выполнить для массивов в Python.

Reversing an Array of Array Module in Python

Even though Python doesn’t support arrays, we can use the Array module to create array-like objects of different data types. Though this module enforces a lot of restrictions when it comes to the array’s data type, it is widely used to work with array data structures in Python.

Now, let us see how we can reverse an array in Python created with the Array module.

1. Using reverse() Method

Similar to lists, the method can also be used to directly reverse an array in Python of the Array module. It reverses an array at its original location, hence doesn’t require extra space for storing the results.

import array

#The original array
new_arr=array.array('i',)
print("Original Array is :",new_arr)

#reversing using reverse()
new_arr.reverse()
print("Reversed Array:",new_arr)

Output:

Original Array is : array('i', )
Resultant new reversed Array: array('i', )

2. Using reversed() Method

Again, the method when passed with an array, returns an iterable with elements in reverse order. Look at the example below, it shows how we can reverse an array using this method.

import array

#The original array
new_arr=array.array('i',)
print("Original Array is :",new_arr)

#reversing using reversed()
res_arr=array.array('i',reversed(new_arr))
print("Resultant Reversed Array:",res_arr)

Output:

Original Array is : array('i', )
Resultant Reversed Array: array('i', )

Python One-Liners Книга

Python Programmemers улучшит свои навыки информатики с этими полезными одноклассниками.

Python One-listers научит вас читать и писать «одноклассники»: краткие заявления полезных функций, упакованных в одну строку кода. Вы узнаете, как систематически распаковать и понимать любую строку кода Python и писать красноречие, мощно сжатый Python, как эксперт.

Пять главных глав на пять глав обложки советы и трюки, регулярные выражения, машинное обучение, самые темы науки о данных и полезные алгоритмы. Подробные объяснения одноклассников вводят ключевые концепции компьютерных наук и повысить ваши кодировки и аналитические навыки. Вы узнаете о продвинутых функциях Python, такие как понимание списка, нарезки, нарезки, функции лямбда, регулярные выражения, карта и уменьшения функций и нарезки нарезки. Вы также узнаете, как:

• Используйте структуры данных для решения проблем реальных проблем, например, использование булевой индексации для поиска городов с загрязнением выше среднего • Leverage data structures to solve real-world problems, like using Boolean indexing to find cities with above-average pollution • Use NumPy basics such as array, shape, axis, type, broadcasting, advanced indexing, slicing, sorting, searching, aggregating, and statistics • Calculate basic statistics of multidimensional data arrays and the K-Means algorithms for unsupervised learning • Create more advanced regular expressions using grouping and named groups, negative lookaheads, escaped characters, whitespaces, character sets (and negative characters sets), and greedy/nongreedy operators •

К концу книги вы узнаете, как писать Python в его самых утонченных, и создавать краткие, красивые куски «Python Art» в простой строке.

Получите свой Python One-Liners сейчас !!

Работая в качестве исследователя в распределенных системах, доктор Кристиан Майер нашел свою любовь к учению студентов компьютерных наук.

Чтобы помочь студентам достичь более высоких уровней успеха Python, он основал сайт программирования образования Finxter.com Отказ Он автор популярной книги программирования Python одноклассники To help students reach higher levels of Python success, he founded the programming education website Finxter.com . He’s author of the popular programming book Python One-Liners (NoStarch 2020), coauthor of the Coffee Break Python series of self-published books, computer science enthusiast, freelancer

Его страсти пишут, чтение и кодирование. Но его величайшая страсть состоит в том, чтобы служить стремлению кодер через Finxter и помогать им повысить свои навыки. Вы можете присоединиться к его бесплатной академии электронной почты здесь.

Список

Список в Python – это встроенная линейная структура данных Python. Он используется для последовательного хранения данных. Мы можем выполнить несколько операций для вывода списка, например индексацию, итерацию и нарезку. Список включает следующие функции:

  • Элементы списка заключаются в квадратные скобки, а каждый элемент отделяется запятой(,).
  • Это изменяемый тип, что означает, что мы можем изменять элементы списка после их создания.
  • Списки упорядочены, элементы хранятся в определенном порядке. Мы можем использовать индексацию для доступа к элементу списка.
  • Мы можем хранить элементы с разными типами данных и комбинировать строки, целые числа и объекты в одном списке.

Ниже приведены примеры списка.

Пример – 1

 
list =  
print(list) 
print(type(list)) 

Выход:

 
<class 'list'> 

Пример – 2

 
# creating a list containing elements 
# belonging to different data types 
list1 = ] 
print(list1) 

Выход:

] 

В приведенном выше списке первым элементом является целое число; второй – это строка, а третий – список символов.

Вычислительные методы NumPy

При помощи различных методов мы можем проводить арифметические операции внутри коллекций, вычислить сумму всех элементов или найти наибольше значение. Приведем пример основных методов:

>>> import numpy as np
>>> grades = np.array(, , ])
>>> gradesarray(,
       ,
       ])
>>> grades.min()2
>>> grades.max()5
>>> grades.sum()51
>>> grades.mean()4.25
>>> grades.std()0.924211375534118
>>> grades.var()0.8541666666666666

Метод min() и max() находит наименьшее и наибольшее значение. Метод sum() — вычисляет сумму всех элементов, mean() — математическое ожидание, std() — стандартное отклонение, var() — дисперсию. 

Эти методы могут применяться к конкретным осям array. К примеру, нам нужно вычислить средний бал по предмету. Для это в метод добавляется аргумент axis, который позволяет проводить вычисление по строкам или столбцам. 

>>> grades.mean(axis=0)array()
>>> grades.mean(axis=1)array()

Если axis=0, выполняется вычисления по всем значениям строк внутри каждого столбца.

Если axis=1, выполняется вычисления со всеми значениями столбца внутри каждой отдельной строки

Массив нарезки

Все идет нормально; Создание и индексация массивов выглядит знакомо.

Теперь мы подошли к нарезке массивов, и это одна из функций, которая создает проблемы для начинающих массивов Python и NumPy.

Структуры, такие как списки и массивы NumPy, могут быть нарезаны. Это означает, что подпоследовательность структуры может быть проиндексирована и извлечена.

Это наиболее полезно при машинном обучении при указании входных и выходных переменных или разделении обучающих строк из строк тестирования.

Нарезка задается с помощью оператора двоеточия ‘:’ с ‘от’ а также ‘в‘Индекс до и после столбца соответственно. Срез начинается от индекса «от» и заканчивается на один элемент перед индексом «до».

Давайте рассмотрим несколько примеров.

Одномерная нарезка

Вы можете получить доступ ко всем данным в измерении массива, указав срез «:» без индексов.

При выполнении примера печатаются все элементы в массиве.

Первый элемент массива можно разрезать, указав фрагмент, который начинается с индекса 0 и заканчивается индексом 1 (один элемент перед индексом «до»)

Выполнение примера возвращает подмассив с первым элементом.

Мы также можем использовать отрицательные индексы в срезах. Например, мы можем нарезать последние два элемента в списке, начав срез с -2 (второй последний элемент) и не указав индекс «до»; это берет ломтик до конца измерения.

Выполнение примера возвращает подмассив только с двумя последними элементами.

Двумерная нарезка

Давайте рассмотрим два примера двумерного среза, которые вы, скорее всего, будете использовать в машинном обучении.

Разделение функций ввода и вывода

Распространено загруженные данные на входные переменные (X) и выходную переменную (y).

Мы можем сделать это, разрезая все строки и все столбцы до, но перед последним столбцом, затем отдельно индексируя последний столбец.

Для входных объектов мы можем выбрать все строки и все столбцы, кроме последнего, указав ‘:’ в индексе строк и: -1 в индексе столбцов.

Для выходного столбца мы можем снова выбрать все строки, используя ‘:’, и индексировать только последний столбец, указав индекс -1.

Собрав все это вместе, мы можем разделить 3-колоночный 2D-набор данных на входные и выходные данные следующим образом:

При выполнении примера печатаются разделенные элементы X и y

Обратите внимание, что X — это двумерный массив, а y — это одномерный массив

Сплит поезд и тестовые ряды

Обычно загруженный набор данных разбивают на отдельные наборы поездов и тестов.

Это разделение строк, где некоторая часть будет использоваться для обучения модели, а оставшаяся часть будет использоваться для оценки мастерства обученной модели.

Для этого потребуется разрезать все столбцы, указав «:» во втором индексе измерения. Набор обучающих данных будет содержать все строки от начала до точки разделения.

Тестовым набором данных будут все строки, начиная с точки разделения до конца измерения.

Собрав все это вместе, мы можем разделить набор данных в надуманной точке разделения 2.

При выполнении примера выбираются первые две строки для обучения и последняя строка для набора тестов.

Вопрос 8. В чём разница между remove, pop и del?

Сложность: (ー_ー)

Каждый из этих трёх методов (точнее, двух методов и одной команды) удаляет элементы списка. Но каждый делает это по-своему и, соответственно, применяется в разных ситуациях.

remove()

Метод remove() удаляет из списка первое совпадающее значение.

Возьмём список и удалим из него элемент ‘b’:

Первая ‘b’ исчезла, но вторая ‘b’ осталась в списке.

pop()

Метод pop() удаляет элемент по индексу и возвращает этот элемент:

Индексация в Python идёт с нуля, поэтому элемент с индексом 2 — третий по счёту. В последних строчках мы вывели изменённый список.

del

Команда del тоже удаляет элемент списка по его индексу, но имеет отличный от pop() синтаксис и ничего не возвращает:

Мы недосчитались четвёртого по индексу (и пятого по счёту) элемента, то есть ‘b’.

Также команда del может удалять из списка срезы (slices):

При указании границ среза в Python последний элемент в срез не входит. Поэтому из списка удалены элементы с третьего (индекс 2) по пятый (индекс 4), исключая последний, то есть 66.25 и 333.

Наконец, del может удалять целые переменные.

Массивы в Python

Python массивы и списки представляют собой простой набор связанных значений, которые называются элементами. Обычно это любой тип данных, включая объекты или другие списки! При работе с массивами все данные должны быть одинаковыми — нельзя хранить вместе строки и целые числа. Вам почти всегда придется указывать, сколько элементов нужно хранить. Динамические массивы существуют, но проще начать с массивов фиксированной длиной.

Python несколько усложняет ситуацию. Он не всегда придерживается строгих определений структур данных. Большинство объектов в Python обычно являются списками, поэтому создавая массив, вы проделываете больше работы. Вот начальный код:

from array import array
numbers = array('i', )
print numbers

Первая строка импортирует модуль array, необходимый для работы с массивами. Вторая строка создает новый массив numbers и инициализирует его значениями 2, 4, 6 и 8. Каждому элементу присваивается целочисленное значение, называемое ключом или индексом. Ключи начинаются с нуля, поэтому будет обращаться к первому элементу (2):

Вам наверно интересно, для чего используется «i». Это typecode, который сообщает Python, что массив будет хранить целые числа. Обычно подобные вещи в Python не нужны. Причина этого проста. Массивы в Python основаны на базовых C-массивах операционной системы. Это означает, что они быстрые и стабильные, но не всегда могут придерживаться синтаксиса Python.

Нельзя хранить элементы разных типов в этих массивах. Допустим, вы захотели сохранить строку «makeuseof.com»:

numbers = array('i', )

Это вызовет исключение при работе с Python массивом строк:

Вот как можно вывести все элементы:

print numbers

Этот метод доступа к элементам массива работает хорошо, и идеально подходит для решения задачи. Плохо то, что это — доступ ко всему массиву.

Каждый язык программирования реализует цикл, который идеально подходит для итерации (циклизации) над элементами списка.

Наиболее распространенные циклы while и for. Python делает это еще проще, предоставляя цикл for in:

for number in numbers:
    print number

Обратите внимание на то, что вам не нужно обращаться к элементам по их ключу. Это лучший способ работы с массивом

Альтернативный способ перебора списка — это цикл for:

for i in range(len(numbers)):
    print numbers

Этот пример делает то же самое, что и предыдущий. Но в нем нужно указать количество элементов в массиве (len (cars)), а также передать i в качестве ключа. Это почти тот же код, который выполняется в цикле for in. Этот способ обеспечивает большую гибкость и выполняется немного быстрее (хотя цикла for in в большинстве случаев более чем достаточно).

Implementing MergeSort and QuickSort

Here, we investigate two other commonly used Sorting techniques used in actual practice, namely the MergeSort and the QuickSort algorithms.

1. MergeSort Algorithm

The algorithm uses a bottom-up Divide and Conquer approach, first dividing the original array into subarrays and then merging the individually sorted subarrays to yield the final sorted array.

In the below code snippet, the method does the actual splitting into subarrays and the perform_merge() method merges two previously sorted arrays into a new sorted array.

import array

def mergesort(a, arr_type):
    def perform_merge(a, arr_type, start, mid, end):
        # Merges two previously sorted arrays
        # a and a
        tmp = array.array(arr_type, )
        def compare(tmp, i, j):
            if tmp <= tmp:
                i += 1
                return tmp
            else:
                j += 1
                return tmp
        i = start
        j = mid + 1
        curr = start
        while i<=mid or j<=end:
            if i<=mid and j<=end:
                if tmp <= tmp:
                    a = tmp
                    i += 1
                else:
                    a = tmp
                    j += 1
            elif i==mid+1 and j<=end:
                a = tmp
                j += 1
            elif j == end+1 and i<=mid:
                a = tmp
                i += 1
            elif i > mid and j > end:
                break
            curr += 1


    def mergesort_helper(a, arr_type, start, end):
        # Divides the array into two parts
        # recursively and merges the subarrays
        # in a bottom up fashion, sorting them
        # via Divide and Conquer
        if start < end:
            mergesort_helper(a, arr_type, start, (end + start)//2)
            mergesort_helper(a, arr_type, (end + start)//2 + 1, end)
            perform_merge(a, arr_type, start, (start + end)//2, end)


    # Sorts the array using mergesort_helper
    mergesort_helper(a, arr_type, 0, len(a)-1)

Test Case:

a = array.array('i', )
print('Before MergeSort ->', a)
mergesort(a, 'i')
print('After MergeSort ->', a)

Output:

Before MergeSort -> array('i', )
After MergeSort -> array('i', )

2. QuickSort Algorithm

This algorithm also uses a Divide and Conquer strategy, but uses a top-down approach instead, first partitioning the array around a pivot element (here, we always choose the last element of the array to be the pivot).

Thus ensuring that after every step, the pivot is at its designated position in the final sorted array.

After ensuring that the array is partitioned around the pivot (Elements lesser than the pivot are to the left, and the elements which are greater than the pivot are to the right), we continue applying the function to the rest of the array, until all the elements are at their respective position, which is when the array is completely sorted.

Note: There are other approaches to this algorithm for choosing the pivot element. Some variants choose the median element as the pivot, while others make use of a random selection strategy for the pivot.

def quicksort(a, arr_type):
    def do_partition(a, arr_type, start, end):
        # Performs the partitioning of the subarray a
        
        # We choose the last element as the pivot
        pivot_idx = end
        pivot = a

        # Keep an index for the first partition
        # subarray (elements lesser than the pivot element)
        idx = start - 1

        def increment_and_swap(j):
            nonlocal idx
            idx += 1
            a, a = a, a

         < pivot]
        
        # Finally, we need to swap the pivot (a with a)
        # since we have reached the position of the pivot in the actual
        # sorted array
        a, a = a, a

        # Return the final updated position of the pivot
        # after partitioning
        return idx+1

    def quicksort_helper(a, arr_type, start, end):
        if start < end:
            # Do the partitioning first and then go via
            # a top down divide and conquer, as opposed
            # to the bottom up mergesort
            pivot_idx = do_partition(a, arr_type, start, end)
            quicksort_helper(a, arr_type, start, pivot_idx-1)
            quicksort_helper(a, arr_type, pivot_idx+1, end)

    quicksort_helper(a, arr_type, 0, len(a)-1)

Here, the method does the step of the Divide and Conquer approach, while the method partitions the array around the pivot and returns the position of the pivot, around which we continue to recursively partition the subarray before and after the pivot until the entire array is sorted.

Test Case:

b = array.array('i', )
print('Before QuickSort ->', b)
quicksort(b, 'i')
print('After QuickSort ->', b)

Output:

Before QuickSort -> array('i', )
After QuickSort -> array('i', )

Списки (list)

Список представляет собой тип, который может хранить любое количество элементов разных типов. Создать список в Python можно несколькими способами:

Создание

Создание пустого списка:

names = []
names = list()

Создание списка с элементами:

names = 

Создание списка на основе другого списка:

names = 
new_names = list(names)

Создание списка повторением какого-либо элемента или другого списка:

names = 
new_names = names * 2

Создание списка с помощью конструкции range():

numbers = list(range(10))

Функция range(10) возвращает числа от 0 до 9, на основе которых создаётся новый список.

Обращение к элементу

Обращение к элементу списка производится по индексу элемента:

names

Индексы элементов начинаются с нулевого, то есть первый элемент списка имеет индекс «0», а второй — «1».

Элементы списка можно обходить циклами for и while:

for name in names:
    print(name)

Сравнение

Списки можно сравнивать между собой. Для того, чтобы два списка считались равными, они должны иметь одинаковый состав. К примеру, следующие два списка будут равны, не смотря на разные способы их создания:

list1 = 
list2 = list(range(10))

Размерность

Список в Python может быть как одномерным, так и многомерным. Выше были приведены примеры одномерных списков. Чтобы список был многомерным, например, двухмерным, каждый элемент списка должен представлять собой другой список:

names = ,
        ,
        ]

В данном примере список состоит из трёх списков, каждый из которых содержит имя и возраст. Аналогично можно создавать списки с большим количеством измерений — с большим количеством уровней вложенности.

Для получения элемента многомерного списка, нужно указывать столько индексов, сколько измерений необходимо использовать для описания элемента:

names = ,
        ,
        ]
names

Преобразование

Двумерный список можно преобразовать в словарь с парами «ключ-значение»:

names = ,
        ,
        ]
new_dict = dict(names)

Матрицы

Двумерный список является матрицей, которую визуально можно представить в следующем виде:

В данном примере переменная А содержит двумерный список, т.е. список списков, каждый из которых состоит из трёх элементов. Тип list в Python не поддерживает работу со списками как с матрицами, но, тем не менее, позволяет матрицы хранить.

Python maximum value on 2d array

First, we will import numpy, and then we will create a 2d array. To find the maximum value from the two-dimensional array we will use the “numpy.max(my_arr)” function.

Example:

After writing the above code (python maximum value on 2d array), Ones you will print “max_element” then the output will appear as “Maximum element on 2d array is: 80”. Here, the numpy.max(my_arr) will return the maximum value from the 2d array.

You can refer to the below screenshot for python maximum value on 2d array


Python maximum value on 2d array

You may like the following Python tutorials:

  • Hash table in python
  • Block Indentation in Python
  • Python get filename from the path
  • Python TypeError: ‘list’ object is not callable
  • Python if else with examples
  • Python For Loop with Examples
  • Python read excel file and Write to Excel in Python
  • Create a tuple in Python
  • Python pass by reference or value with examples
  • Python select from a list + Examples

In this Python tutorial, we learned about python arrays and also how to use it like:

  • What is an Array in Python
  • Access elements from Arrays python
  • How to update am element in Python Array
  • How to get Length of an Array in python
  • How to Add Array elements in python
  • Delete Array elements in python
  • Loop in Array elements in python
  • What is an array module in python
  • Create a python Array
  • Accessing Array elements in python
  • Append item in array python
  • How to Insert element in array python
  • Extend array in python
  • Remove element from an array in python
  • How to remove the last element from a Python array
  • Reverse an array python
  • Python count the occurrence of an element in an array
  • Convert array to list in python
  • Find the index of an element in an array python
  • How to update the element in an array in Python
  • Python lists vs arrays
  • Python list to numpy arrays
  • Python mean of an array
  • Python mean of two arrays
  • Minimum value of array python
  • Maximum value of array python
  • Python minimum value on 2d array
  • Python maximum value on 2d array
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector